1. Part A

Die size:
e The distributions for GPUs and CPUs are similar in that they are both skewed right and
have similar central locations. Both distributions have outliers, but GPUs have more
outliers. The data for GPUs are more spread out. Both groups have missing observations.

Med=median, Q25=~quantile(.,probs=c(0.25), na.rm = TRUE), Q75=~quantile(.,probs=c(0.75), na.rm = TRUE),

StD=sd, IQR=IQR), ha.rm = TRUE) %>% pivot_longer(!Type, names_to="Die_Size") %>%
pivot_wider (id_cols=Die_Size, names_from=Type)

A tibble: 6 x 3
Die_Size CPU GPU
<chr> <dbl1> <dbl>

Avg 167. 203.
Ved 149 148
Q25 109 101
Q7s 217 256
StD 79.7 148,
IQR 108 155

ggplot(cpu_gpu_data, aes(x=Type, y= Die Size (mmA2) , fill=Type)) + stat_boxplot(geom="errorbar",
width=0.25) + geom_boxplot() + labs(y="Die Size (mmA2)", title="Plot 1")

Plot 1

500- i

.
H
.
.
Type
.
400~ B3 cru
B oru
h _
o |
GII’U

Type

Die Size (mm*2)

ggplot(cpu_gpu_data, aes(x= Die Size (mmA2) , group=Type, fill=Type)) + geom_histogram(col="black™) +
labs(title="Plot 2") + facet_wrap(~Type)

Plot 2

count

0 200 400 600 800 [200 400 600 800
Die Size (mm*2)

Frequency:

e The distribution for CPUs is approximately symmetric, while that of GPUs is slightly
skewed right. The central locations for CPUs are also larger, and the data is more spread
out than that of GPUs. Both distributions have outliers, but GPUs have more outliers.
There are no missing observations.

Med=median, Q25=~quantile(.,probs=c(0.25), na.rm = TRUE), Q75=~quantile(.,probs=c(0.75), na.rm = TRUE),

StD=sd, IQR=IQR), na.rm = TRUE) %>% pivot_longer(!Type, names_to="Freq") %>% pivot_wider(id_cols=Freq,
names_from=Type)

A tibble: 6 x 3
Freq CPU GPU
<chr> <dbl> <dbl>
Avg 2482. 663.
Med 2400 600
Q25 2000 412
Q75 3000 850
StD 755. 331.
IQR 1000 438

Plot 1

4000 -

3000 -

Type
E3 cru
=]

Freq (MHz)

2000 -

1000 -

cPU GPU
Type

ggplot(cpu_gpu_data, aes(x= Freq (MHz) , group=Type, fill=Type)) + geom_histogram(col="black") +
Tabs(title="Plot 2") + facet_wrap(~Type)

Plot 2

400~

Type

CPU
GPU

count

200~

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Freq (MHz)

Process size:
e The distributions for GPUs and CPUs are similar in that they are both slightly skewed
right and have similar central locations and spread. GPUs have one outlier while CPUs

have none. There are no missing observations.

cpu_gpu_data %>% group_by(Type) %>% select(Type, Process Size (nm))%>% summarise_all(1list(Avg=mean,
Med=median, Q25=~quantile(.,probs=c(0.25), na.rm = TRUE), Q75=~quantile(.,probs=c(0.75), na.rm = TRUE),
StD=sd, IQR=IQR), na.rm = TRUE) %>% pivot_longer(!Type, names_to="Process_Size") %>%

pivot_wider (id_cols=Process_Size, names_from=Type)

A tibble: 6 x 3
Process_Size CPU GPU

<chr> <dbl> <dbl>
Avg 52.0 57.7
Med 32 40
Q25 14 28
Q75 90 90
StD 42.1 47.1
IQR 76 62

ggplot(cpu_gpu_data, aes(x=Type, y= Process Size (nm) , fi1l1=Type)) + stat_boxplot(geom="errorbar",
width=0.25) + geom_boxplot() + labs(y="Process Size (nm)", title="Plot 1")

Plot 1

250~

Type
B3 cru
=]

Process Size (nm)

Type

ggplot(cpu_gpu_data, aes(x= Process Size (nm) , group=Type, fill=Type)) + geom_histogram(col="black") +
Tabs(title="Plot 2") + facet_wrap(~Type)

Plot 2

400~

count

0- I

[100 200 [100 200
Process Size (nm)

Thermal design power:

e The distributions for GPUs and CPUs are similar in that they are both skewed right and
have similar central locations. Both distributions have outliers, but the outliers for GPUs
are more spread out. As a result, the data for GPUs is more spread out. There are missing
observations for GPUs.

Q25=~quantile(.,probs=c(0.25), na.rm = TRUE), Q75=~quantile(.,probs=c(0.75), na.rm = TRUE), StD=sd,

IQR=IQR), na.rm = TRUE) %>% pivot_longer (!Type, names_to="TDP") %>% pivot_wider(id_cols=TDP,
names_from=Type)

A tibble: 6 x 3
TDP CPU GPU
<chr> <dbl> <dbl>
Avg 75.4 87.8
Med 65 50
Q25 35 25
Q75 95 116.
StD 54.4 94.8
I0R 60 91.5

ggplot(cpu_gpu_data, aes(x=Type, y= TDP (W) , fill=Type)) + stat_boxplot(geom="errorbar", width=0,25) +
geom_boxplot() + labs(y="TDP (W)", title="Plot 1')

Plot 1

.
500~ . Type

E3 cru
Ba cru

. mes

cPu oPU
Type

ggplot(cpu_gpu_data, aes(x= TDP (W) , group=Type, fill=Type)) + geom_histogram(col="black") +
labs(title="Plot 2") + facet_wrap(~Type)

Plot 2
cPu GPU

400~

Type

cpPU
GPU

count

0
TDP (W)

Transistors:
e The distributions for GPUs and CPUs are similar because they are both skewed right and
have outliers. The central location for GPUs are larger, and the data is more spread out

than that of CPUs. Both groups have missing observations.

cpu_gpu_data %>% group_by(Type) %>% select(Type, Transistors (million))%>%
summarise_al1(Tist(Avg=mean, Med=median, Q25=~quantile(.,probs=c(0.25), na.rm = TRUE),
Q75=~quantile(.,probs=c(0.75), na.rm = TRUE), StD=sd, IQR=IQR), na.rm = TRUE) %>% pivot_longer(!Type,
names_to="Transistors") %% pivot_wider(id_cols=Transistors, names_from=Type)

A tibble: 6 x 3
Transistors CPU GPU

<chr> <dbl1> <dbl>
Avg 1156. 2455,
Med 410 716
Q25 114 210
Q75 1200 2800
StD 2037. 4896.
IQR 1086 2590

ggplot(cpu_gpu_data, aes(x=Type, y= Transistors (million) , fi11=Type)) +
stat_boxplot(geom="errorbar", width=0.25) + geom_boxplot() + Tabs(y="Transistors (million)",
title="Plot 1")

Plot 1

40000~

Type
=[]
=]

Transistors (million)

20000~

Type

ggplot(cpu_gpu_data, aes(x= Transistors (million) , group=Type, fill=Type)) +
geom_histogram(col="black") + labs(title="Plot 2") + facet_wrap(~Type)

Plot 2

1000 -

Type

CPU
GPU

count

0 20000 40000 0 20000 40000
Transistors (million)

1. Part B

There are some strong associations between the number of processors released by the vendors
and foundries. The GF foundry exclusively releases semiconductors to the AMD vendor, as
shown by the 1 in the numerical summary (symbolizing a full proportion) and the solid bar in
Plot 1. The Intel foundry exclusively releases semiconductors to their Intel vendor. The Samsung
foundry releases a large proportion to the NVIDIA vendor, while the other foundries are more
mixed. On the other hand, the Intel vendor releases semiconductors almost exclusively from their
Intel foundry. The ATI and NVIDIA vendor releases a large proportion from the TSMC foundry,
while the other vendors are more mixed.

o Numerical summaries:

cpu_gpu_data2 <- cpu_gpu_data %>% mutate(Foundry_Lump=fct_lump(Foundry, 6))
cpu_gpu_array <- xtabs(~vVendor+Foundry_Lump+Type, data=cpu_gpu_dataz)

column_props <- apply(cpu_gpu_array, c("vendor", "Foundry_Lump'), sum) %>% prop.table(., c(2))
column_props

Foundry_Lump
Vendor GF Intel Samsung TSMC umc Unknown Other

AMD 1 0 0.00000000 0.291092746 0.0000000 0.879907621 0.0625
ATI 0 0 0.00000000 0.206152433 0.3924051 0.057736721 0.3125
Intel 0 1 0.00000000 0.000000000 0.0000000 0.002309469 0.0000
NVIDIA O 0 0.98333333 0.494949495 0.1012658 0.060046189 0.2500
Other 0 0 0.01666667 0.007805326 0.5063291 0.000000000 0.3750

cpu_gpu_array2 <- xtabs(~Foundry_Lump+Vendor+Type, data=cpu_gpu_data2)

column_props <- apply(cpu_gpu_array2, c("Foundry_Lump", "vendor"), sum) %>% prop.table(., c(2))
column_props

Vendor
Foundry_Lump AMD ATI Intel NVIDIA Other
GF 0.1594464501 0.000000000 0.000000000 0.000000000 0.000000
Intel 0.0000000000 0.000000000 0.998563218 0.000000000 0.000000
Samsung 0.0000000000 0.000000000 0.000000000 0.049125729 0.015625
TSMC 0.3814681107 0.839252336 0.000000000 0.897585346 0.265625
umMc 0.0000000000 0.057943925 0.000000000 0.006661116 0.625000
unknown 0.4584837545 0.093457944 0.001436782 0.043297252 0.000000
other 0.0006016847 0.009345794 0.000000000 0.003330558 0.093750

e (Graphical summaries:

colors <- c(brewer.pal(n=5, name="Accent"))

myplot <- barplot(column_props, col=colors, x1im=c(0, 12), main="Plot 1: Proportion of Vendors using a
Foundry', xlab="Foundry")

legend("topright", legend = c("AMD", "ATI", "Intel", "NVIDIA", "Other"), fill=colors, cex=0.65)

Plot 1: Proportion of Vendors using a Foundry

1.0

[I
| A
o
2
1 nviDiA
2 -
=
o
o~
=3
(=]
o
GF Intel Samsung TSMC umMc Unknown Other
Foundry

colors <- c(brewer.pal(n=7, name="Accent"))

myplot <- barplot(column_props, col=colors, x1im=c(0, 9.5), main="Plot 2: Proportion of Foundries used
by a Vvendor", xlab="vendor")

Tegend("topright", legend = c("GF", "Intel", "Samsung", "TsMc", "uMmc", "uUnknown", "Other"), fill=colors,
cex=0.65)

Plot 2: Proportion of Foundries used by a Vendor

1.0

GF

Intel

0.8

Samsung

TSMC

0.6

umc

Unknown

BERICOE

Other

0.4

0.2

0.0

AMD ATI Intel NVIDIA Other

Vendor

The association does not seem to depend on whether they are CPUs or GPUs. For both groups,
the GF foundry exclusively releases semiconductors to the AMD vendor, and the Intel foundry
exclusively releases to their Intel vendor. The Samsung foundry does not apply to CPUs (nor do
the UMC or Other foundries), but it releases a large proportion to the NVIDIA vendor for GPUs.
On the other hand, the Intel vendor releases semiconductors almost exclusively from their Intel
foundry for both CPUs and GPUs. The ATI and NVIDIA vendor does not apply to CPUs, but
they release a large proportion from the TSMC foundry for GPUs.

o Numerical summaries: CPU vs. GPU

column_props <- apply(cpu_gpu_array, c("vendor"™, "Foundry_Lump", "Type"), sum) %>% prop.table(., c(2))
column_props

, , Type = CPU

Foundry_Lump
Vendor GF Intel Samsung TSMC UMC Unknown Other

AMD 0.3509434 0.0000000 0 0.04453627 0 0.8775982 0
ATI 0.0000000 0.0000000 0 0.00000000 O 0.0000000 0
Intel 0.0000000 0.8935252 0 0.00000000 O 0.0000000 0
NVIDIA 0.0000000 0.0000000 0 0.00000000 O 0.0000000 0
Oother 0.0000000 0.0000000 0 0.00000000 O 0.0000000 0

, , Type = GPU

Foundry_Lump

Vendor GF Intel Samsung TSMC umMc Unknown Other
AMD 0.6490566 0.0000000 0.00000000 0.246556474 0.0000000 0.002309469 0.0625
ATI 0.0000000 0.0000000 0.00000000 0.206152433 0.3924051 0.057736721 0.3125
Intel 0.0000000 0.1064748 0.00000000 0.000000000 0.0000000 0.002309469 0.0000
NVIDIA 0.0000000 0.0000000 0.98333333 0.494949495 0.1012658 0.060046189 0.2500
Other 0.0000000 0.0000000 0.01666667 0.007805326 0.5063291 0.000000000 0.3750

column_props <- apply(cpu_gpu_array2, c("Foundry_Lump", "Vendor", "Type"), sum) %>% prop.table(., c(2))
column_props

, , Type = CPU
vendor

Foundry_Lump AMD ATI Intel NVIDIA Other
GF 0.05595668 0 0.0000000 0 0
Intel 0.00000000 O 0.8922414 0 0
Samsung 0.00000000 0 0.0000000 0 0
TSMC 0.05836342 0 0.0000000 0 0
umc 0.00000000 0 0.0000000 0 0
Unknown 0.45728039 0 0.0000000 0 0
Other 0.00000000 0 0.0000000 0 0

, , Type = GPU

vendor

Foundry_Lump AMD ATI Intel NVIDIA other
GF 0.1034897714 0.000000000 0.000000000 0.000000000 0.000000
Intel 0.0000000000 0.000000000 0.106321839 0.000000000 0.000000
Samsung 0.0000000000 0.000000000 0.000000000 0.049125729 0.015625
TSMC 0.3231046931 0.839252336 0.000000000 0.897585346 0.265625
umc 0.0000000000 0.057943925 0.000000000 0.006661116 0.625000
Unknown 0.0012033694 0.093457944 0.001436782 0.043297252 0.000000
Other 0.0006016847 0.009345794 0.000000000 0.003330558 0.093750

e Graphical summaries: CPU vs. GPU

colors <- c(brewer.pal(n=5, name="Accent™))

Plot 3: Proportion of Vendors using a Foundry for CPUs

o e
g
[
[ntel
o | I:l NVIDIA
o
[T
< |
o
™
o
o | [
o
GF Intel Samsung TSMC umc Unknown Other
Foundry

myplot2 <- barplot(column_props[,,2], col=colors, xlim=c(0, 12), main="Plot 4: Proportion of vendors
using a Foundry for GPUs", xlab="Foundry')
legend("topright"”, Tegend = c("AMD", "ATI", "Intel", "NVIDIA", "Other"), fill=colors, cex=0.65)

Plot 4: Proportion of Vendors using a Foundry for GPUs

1.0

AMD

ATl

0.8

Intel

NVIDIA

BUONN

Other

0.6

04

0.2

—

GF Intel Samsung TSMC umc Unknown Other

Foundry

colors <- c(brewer.pal(n=7, name="Accent"))

myplotl <- barplot(column_props[,,1], col=colors, x1im=c(0, 9.5), main="Plot 5: Proportion of Foundries
used by a Vendor for CPUs", xlab="vendor")

Tegend("topright", legend = c("GF", "Intel", "Samsung", "TsSMC", "umcC", "Unknown", "Other"), fill=colors,
cex=0.65)

Plot 5: Proportion of Foundries used by a Vendor for CPUs

o 5
o
] e
l:l Samsung
© SMC
o 7 TSMG
[| Unknown
pa e o
o~
pag
o
o
AMD ATI Intel NVIDIA Other
Vendor

myplot2 <- barplot(column_props[,,2], col=colors, x1im=c(0, 9.5), main="Plot 6: Proportion of Foundries
used by a vendor for GPUs", xlab="vendor")

Tegend("topright”, legend = c("GF", "Intel", "Samsung", "TSMC", "uMmC", "Unknown", "Other"), fill=colors,
cex=0.65)

Plot 6: Proportion of Foundries used by a Vendor for GPUs

1.0

GF

Intel

0.8

Samsung

TSMG

0.6

umc

Unknown

BERICOER

Other

0.4

0.2

0.0

AMD ATI Intel NVIDIA Other

Vendor

1. Part C

The association between Die Size and Thermal Design Power depends on Type. The correlation
coefficient for CPUs is 0.411, so it represents a positive and moderate relationship. The
correlation coefficient for GPUs is 0.731, so the graph has a steeper trajectory. Without Type, the
correlation coefficient comes at an in-between number.

e Correlation without Type:

cpu_gpu_data %>% drop_na(TDP (W) , Die Size (mmA2)) %>% summarise(Correlation=cor(TDP (W) , Die
Size (mmA2) 7))

A tibble: 1 x 1
Correlation
<adb 1>
0.681

TDP vs. Die Size
1200~

900~

Type
© cru
© GPU

600~

Die Size (mm"2)

300~

TDP (W)

e Correlation with Type:

cpu_gpu_data %% drop_na(TDP (W) , Die Size (mmA2)) %% group_by(Type) %>%
summarise(Correlation=cor(TDP (W) , Die Size (mmAr2)))

A tibble: 2 x 2
Type Correlation

<chr> <ab 1>
CPU 0.411
GPU 0.731

ggplot(cpu_gpu_data, aes(x=TDP (W) , y= Die Size (mmA2) , col=Type)) + geom_point() + facet_wrap(~Type)
+ Tabs(x="TDP (W)", y="Die Size (mmA2)", title="TDP vs. Die Size") + geom_smooth(method="Tm",
col="black™)

TDP vs. Die Size

1250~

1000-

o

Type
© cpu
* GPU

Die Size (mm*2)

2. Part A

Intel and TSMC consistently produced processors over the years 2000-2021, with both
increasing to produce the most processors in the year 2013 and decreasing thereafter. Other
foundries produced processors at different years. UMC stopped producing after 2009, while
Samsung and GF only started after 2011 and 2014 respectively—seeming to take the place of
UMC and other foundries belonging in the Other or Unknown categories.

e Number of processors by year and foundry: Numerical summary

cpu_gpu_data2 <- cpu_gpu_data %>% mutate(Foundry_Lump=fct_lump(Foundry, 6)) %>% filter(Release
Date !="NaT")

dates <- as.Date(cpu_gpu_data2$ Release Date , "%m/%d/%Y")

cpu_gpu_data2 <- cpu_gpu_data2 %>% mutate(Firstofyvear=floor_date(dates, unit="year"))
foundrybyYear <- cpu_gpu_data2 %>% group_by(Firstofyear, Foundry_Lump) %>% summarise(count=n())

foundrybyyear2 <- foundrybyYear %>% pivot_wider(., id_cols="Firstofyear", names_from="Foundry_Lump"
values_from="count")

foundrybyyear2[is.na(foundrybyyear2)] <- 0

foundrybyYyear2 %>% print(n=22)

A tibble: 22 x 8
Groups Firstofyear [22]
FirstofYear Intel TSMC Unknown Other UMC Samsung GF
<date> <int> <int> <Tnt> <int> <int> <THE> <Int>
2000-01-01 4 25 14 4 0 0 0
2001-01-01 36 37 53 2 7 0 0
2002-01-01 28 48 21 0 11 0 0
2003-01-01 35 80 48 0 22 0 0
2004-01-01 47 108 100 1 10 0 0
2005-01-01 62 82 101 1 3 0 0
2006-01-01 76 104 76 2 6 0 0
2007-01-01 45 112 60 2 8 0 0
2008-01-01 52 138 88 0 7 0 0
2009-01-01 63 98 59 0 1 0 0
2010-01-01 104 135 52 0 0 0 0
2011-01-01 108 162 59 0 [} 1 0
2012-01-01 109 163 57 2 0 0 0
2013-01-01 118 191 39 1 0 0 0
2014-01-01 63 129 7 0 0 0 9
2015-01-01 67 137 2 0 0 0 7
201e-01-01 21 77 9 0 0 2 22
2017-01-01 66 38 11 0 0 13 90
2018-01-01 84 35 7 0 [} 7 70
2019-01-01 53 38 3 0 0 5 52
2020-01-01 60 94 o] 0 0 9 11
2021-01-01 84 38 0 0 0 21 0

e Number of processors by year and foundry: Graphical summary

ggplot(foundrybyYear, aes(x=Firstofyear, y=count, col=Foundry_Lump)) + geom_point(size=2.5) +
geom_line(size=1.25) + labs(x="Date", y="Count", title="Plot 1: Number of Processors by Year and
Foundry") + scale_color_brewer(palette="Accent")

Plot 1: Number of Processors by Year and Foundry
200-

150~

Foundry_Lump
GF
Intel
Samsung
TSMC

== UMC

8= Unknown

=8 Other

50~

2000 2005 2010 2015 2020
Date

AMD, Intel, and NVIDIA consistently produced processors over the years 2000-2021, with all
having certain years of increased production and certain years of low. AMD most notably peaked
in 2012, while Intel peaked in 2013 and NVIDIA less dramatically peaked in 2008 and 2013.
Other vendors produced processors at different years. ATI stopped producing after 2013 and
vendors in the Other category stopped producing after 2011, perhaps due to the increased
production of the aforementioned three vendors.

o Number of processors by year and vendor: Numerical summary

cpu_gpu_data2 <- cpu_gpu_data %>% filter(Release Date !="NaT")

dates <- as.Date(cpu_gpu_data2$ Release Date , "%m/%d/%Y")

cpu_gpu_data2 <- cpu_gpu_data2 %>% mutate(Firstofyvear=floor_date(dates, unit="year"))
vendorbyYear <- cpu_gpu_dataz %>% group_by(Firstofyear, Vendor) %>% summarise(count=n())

vendorbyYear2 <- vendorbyYear %>% pivot_wider(., id_cols="Firstofyear", names_from="vendor",
values_from="count™)

vendorbyyear2[is.na(vendorbyyear2)] <- 0

vendorbyYear2 %% print(n=22)

Firstofyear AMD ATI Intel NVIDIA Other

2000-01-01 14 11 4 13 5
2001-01-01 51 23 36 17 8
2002-01-01 13 27 28 33 7
2003-01-01 41 42 35 53 14
2004-01-01 920 64 47 58 7
2005-01-01 95 53 62 37 2
2006-01-01 67 40 76 80 1
2007-01-01 33 83 45 64 2
2008-01-01 71 64 54 96 0
2009-01-01 53 46 63 59 0
2010-01-01 63 56 104 68 0
2011-01-01 135 9 108 77 1
2012-01-01 144 5 109 73 0
2013-01-01 136 1 118 94 0
2014-01-01 81 0 63 64 0
2015-01-01 87 0 67 59 0
2016-01-01 66 0 21 44 0
2017-01-01 108 0 66 44 o]
2018-01-01 80 0 84 39 0
2019-01-01 105 0 53 43 0
2020-01-01 76 0 60 38 o]
2021-01-01 33 0 84 26 0

o Number of processors by year and vendor: Graphical summary

ggplot(vendorbyYear, aes(x=FirstofYear, y=count, col=Vendor)) + geom_point(size=2.5) +
geom_Tine(size=1.25) + labs(x="Date", y="Count", title="Plot 2: Number of Processors by Year and
Vendor") + scale_color_brewer(palette="Accent")

Plot 2: Number of Processors by Year and Vendor
150-

100~

Vendor
ANMD
ATI

Count

Intel
NVIDIA
8= Other
50~

2000 2005 2010 2015 2020
Date

2. Part B

Moore’s Law holds true. If I test the correlation between my expected transistor calculations and
the actual transistor numbers, the correlation coefficient rounds to 0.92 and 1.00 for CPUs and
GPUs respectively. This means the strength of the relationship is very strong, and we can see

both numerically and graphically that these numbers and distribution are very similar.

> cor (MytransistorsbyYear23CPU, transistorsbyYear$CPU)
[1] 0.9178498
> cor (MytransistorsbyYear23$GPU, transistorsbyYyear$GPU)
[1] 0.9967188

e What I observed in the data numerically:

dates <- as.Date(cpu_gpu_data$ Release Date , "%m/%d/%Y")
cpu_gpu_dataz <- cpu_gpu_data %% mutate(Firstof2ndyear=floor_date(dates, unit="2 years"))

transistorsbyYear <- cpu_gpu_data2 %>% group_by(Firstof2ndyear, Type) %>%
summarise (Average=mean(Transistors (miTlion) , na.rm=TRUE)) %>% drop_na() %>% pivot_wider(.,
id_cols="Firstof2ndyear", names_from="Type", values_from="Average") %% print()

Firstof2ndyear CcPU GPU
2000-01-01 60.7 36.1
2002-01-01 76.3 64.4
2004-01-01 121. 142.
2006-01-01 263. 260.
2008-01-01 445, 550.
2010-01-01 729. 1102.
2012-01-01 1489. 1940.
2014-01-01 1522. 2515.
2016-01-01 Bi91. 5070.
2018-01-01 £341. 7793.
2020-01-01 7150. 16144.

e What I observed in the data graphically:

ggplot(transistorsbyyear, aes(x=Firstof2ndyvear, y=CPU)) + geom_point() + geom_1ine() + labs(x="Date",
y="Count", title="Number of CPU Transistors Every Two Years")

Number of CPU Transistors Every Two Years

6000~

4000~

Count

2000~

2000 2005 2010 2015 2020
Date

ggplot(transistorsbyyear, aes(x=Firstof2ndyear, y=GPU)) + geom_point() + geom_line() + labs(x="Date",
y="Ccount", title="Number of GPU Transistors Every Two Years")

Number of GPU Transistors Every Two Years

15000 -

10000 -

Count

5000~

| | \ l !
2000 2005 2010 2015 2020
Date

e What I expected to see if Moore’s law held numerically:

doubTleComputing <- function(tibble, column, replaceAmount) {
ComputedTransistors <- tibble
for(i 1in O:replaceAmount) {
ComputedTransistors[[column]][i+1] <- transistorsbyYear[[column]][1]#*(2A1)
}
ComputedTransistors

b

MytransistorsbyYear <- doubleComputing(transistorsbyYear, 2, 10)
MytransistorsbyYear2 <- doubleComputing(Mytransistorshyyear, 3, 10)
MytransistorsbyYear2

A ti e: 11 x 3

Groups Firstof2ndyear [11]
Firstof2ndyear CPU GPU
<date> <db 1> <db 1>
2000-01-01 60.7 36.1
2002-01-01 121. 72.3
2004-01-01 243. 145.
2006-01-01 486. 289.
2008-01-01 971. 578.
2010-01-01 1943. 1157.
2012-01-01 3885. 2314.
2014-01-01 7771. 4627.
2016-01-01 15541. 9254.
2018-01-01 31083. 18508.

2020-01-01 62166. 37016.

e What I expected to see if Moore’s law held graphically:

y="Count", title="Number of Expected CPU Transistors Every Two Years'")

ggplot(MytransistorsbyYear2, aes(x=Firstofzndyvear, y=CPU)) + geom_point() + geom_Tine() + Tabs(x="Date",
Number of Expected CPU Transistors Every Two Years

60000~

40000 -

Count

20000~

2000 2005 2010 2015
Date

y="Count"”, title="Number of Expected GPU Transistors Every Two Years")

ZdZG
égp'lot(Myfransi storsbyyear2, aes (x=Firstof2ndyear, y=GPU)5 + geom_poi ht() + geom_line() + labs(x="Date",
Number of Expected GPU Transistors Every Two Years

30000-

20000~

Count

10000 -

2000 2005 2010 2015
Date

2020

